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Abstract. Let Γ be a dual polar graph with diameter D ≥ 3. From every pair of a ver-
tex of Γ and a maximal clique containing it, we construct a 2D-dimensional irreducible
module for a nil-DAHA of type (C∨1 , C1). Using this module, we define non-symmetric
dual q-Krawtchouk polynomials and describe their orthogonality relations.
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1 Introduction

Q-polynomial distance-regular graphs (DRGs) are viewed as finite analogues of compact
symmetric spaces of rank one, and have been extensively studied; cf. [1, 2, 7]. By a
famous theorem of Leonard [11], [1, §3.5], the duality property of Q-polynomial DRGs
characterizes the terminating branch of the Askey scheme [8] of (basic) hypergeometric
orthogonal polynomials, at the top (i.e., 4φ3) of which are the q-Racah polynomials. A
central tool in studying such a graph is the Terwilliger algebra T = T(x) [14], which is a
non-commutative semisimple matrix C-algebra attached to every vertex x of the graph.

The double affine Hecke algebras (DAHAs) for reduced affine root systems were intro-
duced by Cherednik [3] in his proof of Macdonald’s constant term conjecture for Mac-
donald polynomials. Sahi [12] extended the definition of DAHAs to the non-reduced
affine root systems of type (C∨n , Cn), and proved the duality conjecture for the Koorn-
winder polynomials, which are the Macdonald polynomials attached to the affine root
systems of type (C∨n , Cn). For n = 1, these polynomials are the Askey–Wilson polyno-
mials which are of 4φ3, and the q-Racah polynomials are a discretization of the Askey–
Wilson polynomials.
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Recently, the first author [9] found a link between the theories of Q-polynomial DRGs
and the DAHAs. Namely, he considered a Q-polynomial DRG Γ corresponding to q-
Racah polynomials. He further assumed that Γ possesses a clique C with maximal possi-
ble size (called a Delsarte clique), and defined a semisimple matrix C-algebra T = T(x, C)
attached to C and a vertex x ∈ C, which contains T(x) as a subalgebra. Then he showed
that the so-called primary T-module has the structure of an irreducible module for the
DAHA of type (C∨1 , C1), and studied how the two module structures are related. In
the subsequent paper [10], he captured in this context what should be called the non-
symmetric q-Racah polynomials, which are the finite counterpart of the non-symmetric
Askey–Wilson polynomials discussed by Sahi [12], and succeeded in describing their
orthogonality relations explicitly.

A big goal in this project is to establish a “non-symmetric version” of Leonard’s
theorem mentioned above. As the next attempt towards this goal, we discuss the dual
polar graphs in this extended abstract, and specialize the above situation to this case.
The dual polar graphs are a classical family of Q-polynomial DRGs, and correspond
to dual q-Krawtchouk polynomials which are of 3φ2. In particular, we will obtain the
non-symmetric dual q-Krawtchouk polynomials and describe their orthogonality rela-
tions; cf. Theorem 7.6. There are multiple motivations for the research presented here.
First, for the q-Racah case, there is indeed no known example of a Q-polynomial DRG
having such a maximal clique, so that the theory developed in [9, 10] remains at the
algebraic/parametric level, whereas we will deal with concrete combinatorial examples
in this extended abstract. Second, there are of course other candidates of examples, such
as the Grassmann graphs corresponding to the dual q-Hahn polynomials which lie in
between the q-Racah and the dual q-Krawtchouk polynomials, but we decided to focus
on the dual polar graphs, mainly because they exhibit quite a strong regularity of be-
ing regular near polygons, so that the computations become far simpler than those in [9,
10]. Though many of our results can also be obtained in principle by taking appropriate
limits of the (much involved) results in [9, 10], this fact motivates us to work out the
details for this case rather independently of [9, 10]. Third, we will encounter a nil-DAHA
of type (C∨1 , C1), which is obtained by specializing some of the defining relations of the
DAHA of type (C∨1 , C1). The nil-DAHAs were introduced and discussed recently by
Cherednik and Orr [4, 5, 6], and our results demonstrate the fundamental importance of
the concept in the theory of Q-polynomial DRGs; cf. Theorems 5.7 and 5.8.

Throughout this extended abstract, we use the following notation. For a given
nonempty finite set X, let MatX(C) be the C-algebra consisting of the complex square
matrices indexed by X. Let V = VX be the C-vector space consisting of the complex
column vectors indexed by X. We endow V with the standard Hermitian inner product
〈u, v〉 = utv for u, v ∈ V. For every y ∈ X, let ŷ be the vector in V with a 1 in the
y-coordinate and 0 elsewhere. For a subset Y ⊆ X, let Ŷ = ∑y∈Y ŷ ∈ V. A Laurent poly-
nomial f (η) ∈ C[η, η−1] in the variable η is said to be symmetric if f (η) = f (η−1), and
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non-symmetric otherwise. Note that the symmetric Laurent polynomials are precisely the
polynomials in ξ := η + η−1. Let q be a prime power. For a ∈ C and an integer n ≥ 0, let

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1),
[

n
1

]
=

[
n
1

]
q
=

qn − 1
q− 1

.

2 Preliminaries: Distance-regular graphs

Let Γ be a finite simple connected graph with vertex set X and diameter D. For x ∈ X,
let Γi(x) = {y ∈ X : ∂(x, y) = i} for 0 ≤ i ≤ D, where ∂ denotes the shortest path-length
distance. We abbreviate Γ(x) := Γ1(x). We call Γ distance-regular if there are integers
ai, bi, ci (0 ≤ i ≤ D), called the intersection numbers of Γ, such that

ai = |Γi(x) ∩ Γ(y)|, bi = |Γi+1(x) ∩ Γ(y)|, ci = |Γi−1(x) ∩ Γ(y)|

for every pair of vertices x, y ∈ X with ∂(x, y) = i, where Γ−1(x) = ΓD+1(x) := ∅.
Assume that Γ is distance-regular. The ith distance matrix of Γ is the 0-1 matrix Ai ∈

MatX(C) such that (Ai)xy = 1 if and only if ∂(x, y) = i. The Bose-Mesner algebra of Γ is
the semisimple subalgebra M of MatX(C) generated by the Ai. Observe that

A1Ai = bi−1Ai−1 + ai Ai + ci+1Ai+1 (0 ≤ i ≤ D),

from which it follows that for 0 ≤ i ≤ D, there is a polynomial fi ∈ C[ξ] with deg fi = i
such that fi(A) = Ai. In particular, the adjacency matrix A := A1 of Γ generates M.

Since A is real symmetric and generates M, it has D + 1 mutually distinct real eigen-
values θ0, θ1, · · · , θD, which we call the eigenvalues of Γ. We will always set θ0 := b0, the
valency (or degree) of Γ. For 0 ≤ i ≤ D, let Ei ∈ MatX(C) be the orthogonal projection
onto the eigenspace of θi. Then we have A = ∑D

i=0 θiEi, so that the Ei form a basis for M.
Note that M is also closed under entrywise multiplication, denoted ◦. We say that Γ is
Q-polynomial with respect to the ordering {Ei}D

i=0 (or {θi}D
i=0) if there are scalars a∗i , b∗i , c∗i

(0 ≤ i ≤ D) such that b∗D = c∗0 = 0, b∗i−1c∗i 6= 0 (1 ≤ i ≤ D), and

E1 ◦ Ei =
1
|X| (b

∗
i−1Ei−1 + a∗i Ei + c∗i+1Ei+1) (0 ≤ i ≤ D),

where we set b∗−1E−1 = c∗D+1ED+1 := 0. If this is the case, then for 0 ≤ i ≤ D, there is
a polynomial f ∗i ∈ C[ξ] with deg f ∗i = i such that f ∗i (E1) = Ei, where the multiplication
is under ◦. In particular, if we write E1 = |X|−1 ∑D

i=0 θ∗i Ai, then the θ∗i are (real and)
mutually distinct. Note also that θ∗0 = trace E1 = rank E1.

Assume that Γ is Q-polynomial with respect to the ordering {Ei}D
i=0. Fix a vertex x ∈

X. The dual adjacency matrix of Γ with respect to x is the diagonal matrix A∗ = A∗(x) ∈
MatX(C) defined by (A∗)yy = |X|(E1)xy for y ∈ X. Note that the θ∗i are the eigenvalues
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of A∗, which we call the dual eigenvalues of Γ. The Terwilliger (or subconstituent) algebra
T = T(x) with respect to x is the semisimple subalgebra of MatX(C) generated by A, A∗

[14]. The subspace Mx̂ = ∑D
i=0 CAi x̂ = ∑D

i=0 CEi x̂ of V turns out to be an irreducible
T-module with dimension D + 1, called the primary T-module.

For more detailed information, see [1, 2, 7].

3 Dual polar graphs

In this section, we discuss dual polar graphs. We begin by summarizing some results
from [2, §9.4] that we need. Let D be a positive integer. Let V denote one of the following
spaces over the finite field Fq equipped with a non-degenerate form:

Name dim V Form e
[CD(q)] 2D alternating 1
[BD(q)] 2D + 1 quadratic 1
[DD(q)] 2D quadratic (maximal Witt index D) 0

[2DD+1(q)] 2D + 2 quadratic (non-maximal Witt index D) 2
[2A2D(r)] 2D + 1 Hermitian (q = r2) 3

2
[2A2D−1(r)] 2D Hermitian (q = r2) 1

2

We note that maximal (totally) isotropic subspaces have dimension D. Let X be the
set of all maximal isotropic subspaces of V. The dual polar graph (on V) has vertex set
X, where two vertices x, y are adjacent whenever dim(x ∩ y) = D − 1. This graph is
distance-regular and has diameter D. For the rest of this extended abstract, we shall
assume that Γ is a dual polar graph with diameter D ≥ 3.

The intersection numbers and the eigenvalues of Γ are given by

ai = (qe − 1)
[

i
1

]
, bi = qi+e

[
D− i

1

]
, ci =

[
i
1

]
, θi = qe

[
D− i

1

]
−
[

i
1

]
for 0 ≤ i ≤ D. Moreover, Γ is Q-polynomial with respect to the ordering {θi}D

i=0. The
dual eigenvalues of Γ are given by

θ∗i =
q(1 + qD+e−2)

1− q
+

q(1 + qD+e−2)(1 + qD+e−1)

(q− 1)(1 + qe−1)
q−i

for 0 ≤ i ≤ D; cf. [15, Lemma 16.5]. The dual polar graph Γ is an example of a regular
near polygon (cf. [2, §6.4]), which means that Γ does not have
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(i.e., K1,1,2) as an induced subgraph, and that for every x ∈ X and a maximal clique C,
there is a unique y ∈ C nearest to x, provided that ∂(x, C) < D. Note that the former
condition implies that every edge lies in a unique maximal clique.

Let C be a maximal clique of Γ. For 0 ≤ i ≤ D− 1, define Ci = {y ∈ X : ∂(y, C) = i},
called the ith distance neighbor of C. By [9, Corollary 4.8] (cf. [2, §11.1]), {Ci}D−1

i=0 is an
equitable partition of X, that is, there are integers ãi, b̃i, c̃i (0 ≤ i ≤ D− 1) such that

ãi = |Ci ∩ Γ(y)|, b̃i = |Ci+1 ∩ Γ(y)|, c̃i = |Ci−1 ∩ Γ(y)|

for every y ∈ Ci, where C−1 = CD := ∅. It follows that

ãi = qe
[

i + 1
1

]
−
[

i
1

]
, b̃i = qi+1+e

[
D− i− 1

1

]
, c̃i =

[
i
1

]
for 0 ≤ i ≤ D− 1.

We now recall the Terwilliger algebra of Γ with respect to C; cf. [9, §4], [13]. We call
the diagonal matrix Ã∗ = Ã∗(C) := |C|−1 ∑y∈C A∗(y) the dual adjacency matrix of Γ with
respect to C. It follows that Ã∗ has D mutually distinct real eigenvalues

θ̃∗i =
q(1 + qD+e−2)

1− q
+

q(1 + qD+e−2)(1 + qD+e−1)

(q− 1)(1 + qe)
q−i

for 0 ≤ i ≤ D− 1. The Terwilliger algebra T̃ = T̃(C) with respect to C is the semisimple
subalgebra of MatX(C) generated by A, Ã∗. The subspace MĈ = ∑D−1

i=0 CĈi of V is an
irreducible T̃-module with dimension D, called the primary T̃-module.

4 The primary T-module W

We continue to discuss the dual polar graph Γ. For the rest of this extended abstract, we
fix a vertex x ∈ X and a maximal clique C containing x. Recall T = T(x) and T̃ = T̃(C).

Definition 4.1 ([9, Definition 5.20]). The generalized Terwilliger algebra of Γ with respect to
x, C is the semisimple subalgebra T = T(x, C) of MatX(C) generated by T, T̃.

Note that A, A∗, Ã∗ generate T by definition. We now construct an irreducible T-
module. Recall the equitable partition {Ci}D−1

i=0 of X. For 0 ≤ i ≤ D− 1, let

C−i = Γi(x) ∩ Ci, C+
i = Γi+1(x) ∩ Ci.

Then, it follows that

|C−i | = qie
i

∏
j=1

qD − qj

qj − 1
, |C+

i | = q(i+1)e
i

∏
j=1

qD − qj

qj − 1
(4.1)



6 Jae-Ho Lee and Hajime Tanaka

for 0 ≤ i ≤ D − 1. In particular, the C±i are nonempty. Moreover, it turns out that
{C±i }

D−1
i=0 is again an equitable partition of X. Let W be the subspace of V spanned by

the Ĉ±i . Consider the following ordered orthogonal basis for W:

C = {Ĉ−0 , Ĉ+
0 , Ĉ−1 , Ĉ+

1 , . . . , Ĉ−D−1, Ĉ+
D−1}. (4.2)

Lemma 4.2. For 0 ≤ i ≤ D− 1, we have

A.Ĉ−i =
qD+e − qi+e

q− 1
Ĉ−i−1 + (qe − 1)

qi − 1
q− 1

Ĉ−i + qiĈ+
i +

qi+1 − 1
q− 1

Ĉ−i+1,

A.Ĉ+
i =

qD+e − qi+e

q− 1
Ĉ+

i−1 + qe+iĈ−i + (qe − 1)
qi+1 − 1

q− 1
Ĉ+

i +
qi+1 − 1

q− 1
Ĉ+

i+1,

where Ĉ−−1 = Ĉ+
−1 = Ĉ−D = Ĉ+

D := 0.

Lemma 4.3. For 0 ≤ i ≤ D− 1, we have

A∗.Ĉ−i = (α + βq−i)Ĉ−i , A∗.Ĉ+
i = (α + βq−i−1)Ĉ+

i ,

Ã∗.Ĉ−i = (α + β̃q−i)Ĉ−i , Ã∗.Ĉ+
i = (α + β̃q−i)Ĉ+

i ,

where

α =
q(1 + qD+e−2)

1− q
,

and

β =
q(1 + qD+e−2)(1 + qD+e−1)

(q− 1)(1 + qe−1)
, β̃ =

q(1 + qD+e−2)(1 + qD+e−1)

(q− 1)(1 + qe)
.

Proposition 4.4. The subspace W is an irreducible T-module.

We call W the primary T-module. Note that the primary T-module Mx̂ is a subspace of
W. Indeed, we have

x̂ = Ĉ−0 , Ai x̂ = Ĉ−i + Ĉ+
i−1 (1 ≤ i ≤ D− 1), AD x̂ = Ĉ+

D−1. (4.3)

Let Mx̂⊥ be the orthogonal complement of Mx̂ in W. Then it turns out that Mx̂⊥ is also
an irreducible T-module. For 0 ≤ i ≤ D− 2, let

v⊥i = (qD−i−1 − 1)Ĉ+
i + (q−i−1 − 1)Ĉ−i+1. (4.4)

It follows from (4.1) and (4.3) that the v⊥i form a basis for Mx̂⊥. It can also be shown
that the vectors Eiv⊥0 (1 ≤ i ≤ D− 1) form a basis for Mx̂⊥.
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5 A nil-DAHA of type (C∨1 , C1)

For type (C∨1 , C1), there is some flexibility in the definition of a nil-DAHA. It will turn
out that the following specialization is the one which is well-suited to our situation:

Definition 5.1. Let r0, r1 ∈ C be nonzero scalars. Let H = H(r0, r1) be the C-algebra
defined by generators t0, u0, t1, u1 and relations (i) (tn − rn)(tn − r−1

n ) = 0 for n ∈ {0, 1};
(ii) u2

0 = u0; (iii) u2
1 = 0; (iv) (u0t0)(t1u1) = 0 = (t1u1)(u0t0). We call H a nil-DAHA of

type (C∨1 , C1).

By Definition 5.1(i) we have tn((rn + r−1
n )− tn) = 1 = ((rn + r−1

n )− tn)tn for n ∈ {0, 1},
from which it follows that t0, t1 are invertible, and that t0 + t−1

0 , t1 + t−1
1 are central.

For the rest of the extended abstract, we fix a ∈ C such that a2 = −1/qD+e, and set

r0 = q−D/2, r1 = aqD/2.

We now define a 2D-dimensional representation of H.

Definition 5.2. (i) For 1 ≤ i ≤ D− 1, let

t0(i) =
(

q−D/2(qD − qi + 1) qD/2(qi−D − 1)
q−D/2(1− qi) q−D/2+i

)
, u0(i) =

(
1 qD−i − 1
0 0

)
.

Let t0(0) =
(
q−D/2

)
, t0(D) =

(
q−D/2

)
, u0(0) =

(
0
)
, and u0(D) =

(
1
)
.

(ii) For 0 ≤ i ≤ D− 1, let

t1(i) =
(

aqD/2 + a−1q−D/2 −a−1q−D/2

aqD/2 0

)
, u1(i) =

(
0 0

−aqD/2−i 0

)
.

Referring to Definition 5.2, consider the following 2D× 2D block diagonal matrices:

T0 = blockdiag
(
t0(0), t0(1), . . . , t0(D− 1), t0(D)

)
,

U0 = blockdiag
(
u0(0), u0(1), . . . , u0(D− 1), u0(D)

)
,

T1 = blockdiag
(
t1(0), t1(1), . . . , t1(D− 1)

)
,

U1 = blockdiag
(
u1(0), u1(1), . . . , u1(D− 1)

)
.

Proposition 5.3. T0,U0, T1,U1 satisfy the relations (i)–(iv) in Definition 5.1, and hence define a
representation of H.

Corollary 5.4. The primary T-module W has a module structure for the algebra H such that,
for n ∈ {0, 1}, Tn (respectively Un) is the matrix representing the action of tn (respectively un)
with respect to the ordered basis C from (4.2).
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We note that U0T0 and T1U1 are diagonal matrices as follows:

U0T0 = diag
(

0, q
D
2 −1, 0, q

D
2 −2, 0, q

D
2 −3, 0, . . . , q−

D
2 +1, 0, q−

D
2

)
,

T1U1 = diag
(

1, 0, q−1, 0, q−2, 0, q−3, 0, . . . , q−D+1, 0
)

.

By Corollary 5.4, W is now a module for both T and H. We next discuss how the two
module structures are related. Let Y = t0t1, X0 = u0t0, X1 = t1u1, and let

A = Y + Y−1, B = q−D/2X0 + X1, B̃ = q−
D
2 +1X0 + X1.

Lemma 5.5. For 0 ≤ i ≤ D − 1, the actions of A on Ĉ−i , Ĉ+
i are given respectively as linear

combinations with the following terms and coefficients.

Ĉ−i :

term coefficient
Ĉ−i−1 a−1(1− qi−D)

Ĉ+
i−1 0

Ĉ−i (aqD + a−1)qi−D

Ĉ+
i aqi(1− q)

Ĉ−i+1 a(1− qi+1)

Ĉ+
i :

term coefficient
Ĉ+

i−1 a−1(1− qi−D)

Ĉ−i a−1(q− 1)qi−D

Ĉ+
i (aqD + a−1)qi−D+1

Ĉ−i+1 0
Ĉ+

i+1 a(1− qi+1)

Lemma 5.6. For 0 ≤ i ≤ D− 1, the actions of B and B̃ on Ĉ−i , Ĉ+
i are as follows.

B.Ĉ−i = q−iĈ−i , B.Ĉ+
i = q−i−1Ĉ+

i ,

B̃.Ĉ−i = q−iĈ−i , B̃.Ĉ+
i = q−iĈ+

i .

Recall the generators A, A∗, Ã∗ of T. We now present our first main result.

Theorem 5.7. On W, we have

A =
aqD+e

q− 1
A +

1− qe

q− 1
, A∗ = βB + α, Ã∗ = β̃B̃ + α,

where α, β, β̃ are from Lemma 4.3.

Thus, the actions of A, A∗, Ã∗ on W coincide with those of A, B, B̃, respectively, up to
affine transformation.

Let π (respectively π̃) denote the orthogonal projection from W onto Mx̂ (respectively
MĈ). The following result illustrates (to some extent) how we arrived at the H-module
structure on W given above:

Theorem 5.8. On W, we have

π =
t0 − qD/2

q−D/2 − qD/2 , π̃ =
t1 − a−1q−D/2

aqD/2 − a−1q−D/2 .
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6 Non-symmetric dual q-Krawtchouk polynomials

In this section, we define a certain finite sequence of Laurent polynomials in one variable
η, and show how these Laurent polynomials play a role in the H-module W. We begin
by recalling the (monic) dual q-Krawtchouk polynomials

Ki(ξ) = Ki(ξ; a, D; q) =
(q−D; q)i

ai 3φ2

(
q−i, aη, aη−1

0, q−D

∣∣∣∣ q, q
)

(0 ≤ i ≤ D),

where ξ = η + η−1. Recall the basis {Ai x̂}D
i=0 for Mx̂; cf. (4.3). Then it follows that

Ki(Y + Y−1).x̂ = ai(q; q)i Ai x̂ (0 ≤ i ≤ D). (6.1)

Consider another set of dual q-Krawtchouk polynomials

K⊥i (ξ) = Ki(ξ; aq, D− 2; q)

=
(q−D+2; q)i

aiqi 3φ2

(
q−i, aqη, aqη−1

0, q−D+2

∣∣∣∣ q, q
)

(0 ≤ i ≤ D− 2).

Recall the basis {v⊥i }
D−2
i=0 for Mx̂⊥ from (4.4). Then it follows that

K⊥i (Y + Y−1).v⊥0 = aiqi(q; q)i v⊥i (0 ≤ i ≤ D− 2). (6.2)

Define g ∈ C[η, η−1] by
g(η) = η−1(η − a)(η − a−1q−D).

Then we have
g(Y).x̂ = aq v⊥0 . (6.3)

From (4.3), (4.4), (6.1), (6.2), and (6.3) it follows that

Lemma 6.1. For 1 ≤ i ≤ D− 1, we have

Ĉ+
i−1 =

1
(1− qD)ai(q; q)i−1

(
Ki(Y + Y−1)− K⊥i−1(Y + Y−1)g(Y)

)
x̂,

Ĉ−i =
qD − qi

(qD − 1)ai(q; q)i

(
Ki(Y + Y−1)− 1− qi

qD − qi K⊥i−1(Y + Y−1)g(Y)
)

x̂.

In view of Lemma 6.1, we now make the following definition.

Definition 6.2. For 1 ≤ i ≤ D− 1, let

`+i−1(η) =
Ki − gK⊥i−1

(1− qD)ai(q; q)i−1
, `−i (η) =

qD − qi

(qD − 1)ai(q; q)i

(
Ki −

1− qi

qD − qi gK⊥i−1

)
.

Moreover, let `−0 (η) = 1 and `+D−1(η) = KD/aD(q; q)D. We call the `±i the non-symmetric
dual q-Krawtchouk polynomials.

By definition, the `±i are linearly independent in C[η, η−1]. Observe that

`−i (Y).x̂ = Ĉ−i , `+i (Y).x̂ = Ĉ+
i (0 ≤ i ≤ D− 1).
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7 Orthogonality relations

Let L be the subspace of C[η, η−1] spanned by the Laurent polynomials `±i . In this
section, we define a Hermitian inner product on L and show that the `±i are orthogonal
with respect to that inner product. Recall the basis {Ei x̂}D

i=0 (respectively {Eiv⊥0 }
D−1
i=1 )

for Mx̂ (respectively Mx̂⊥). Consider the following ordered basis for W:

B = {E0x̂, E1x̂, E1v⊥0 , E2x̂, E2v⊥0 , . . . , ED−1x̂, ED−1v⊥0 , ED x̂}.

Lemma 7.1. The matrix representing the action of Y = t0t1 on W with respect to B is

blockdiag
(
[a], [Y(1)], [Y(2)], . . . , [Y(D− 1)], [a−1q−D]

)
,

where for 1 ≤ i ≤ D− 1, [Y(i)] is the 2× 2 matrix given by a(qD−i−1)(qe+qi)+a−1q−D(qi−1)(qD+e−i+1)
(qe+1)(qD−1)

(a−a−1q−D)(qe+qi)(qD−i−1)(qi−1)(qD+e−i+1)
q(qe+1)(qD−1)

q(aqD−a−1)
(qD−1)(qe+1)

aqD(qD+e−i+1)(qi−1)+a−1(qD−i−1)(qe+qi)
(qD−1)(qe+1)

 .

Corollary 7.2. The eigenvalues of Y on W are

a, aq, aq2, . . . , aqD−1,
a−1q−1, a−1q−2, . . . , a−1q1−D, a−1q−D.

We abbreviate λi := aqi (0 ≤ i ≤ D− 1) and λ−i := a−1q−i (1 ≤ i ≤ D). Let

yi = ωiEi x̂ + ω⊥i Eiv⊥0 , y−i = ω−iEi x̂−ω⊥i Eiv⊥0 (1 ≤ i ≤ D− 1),

where

ωi =
a2qD(qi−D − 1)(qD+e+i − qD+e − qe+i − qi)− (qD − qi)(qe + qi)

(qD − 1)(qe + 1)(a2q2i − 1)
,

ω−i =
a2qD(qi − 1)(qD+e + qi)− (qi − 1)(qe + 1 + qi − qD)

(qD − 1)(qe + 1)(a2q2i − 1)
,

ω⊥i =
(a2qD − 1)qi+1

(qD − 1)(qe + 1)(a2q2i − 1)
.

We also let y0 = E0x̂ and y−D = ED x̂.

Proposition 7.3. With the above notation, yi is an eigenvector of Y for the eigenvalue λi for
−D ≤ i ≤ D− 1. Moreover, we have ∑D−1

i=−D yi = x̂.
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Lemma 7.4. For 1 ≤ i ≤ D− 1, we have

‖yi‖2 = ω2
i mi + ω⊥2

i m⊥i ‖v⊥0 ‖2, ‖y−i‖2 = ω2
−imi + ω⊥2

i m⊥i ‖v⊥0 ‖2,

where ‖v⊥0 ‖2 = qe−1(qD−1 − 1)(qD − 1), and

mi =
(−1)D(q−D; q)i(1− a2q2i)

a2(i−D)qi2−Di−D(D+1)
2 (q; q)i(a2qi; q)D+1

(0 ≤ i ≤ D),

m⊥i =
(−1)D−2(q−D+2; q)i(1− a2q2i+2)

a2(i−D+2)qi2−Di+2i− (D−2)(D−1)
2 (q; q)i(a2qi+2; q)D−1

(0 ≤ i ≤ D− 2).

Moreover, ‖y0‖2 = m0 and ‖y−D‖2 = mD.

Lemma 7.5. For f , g ∈ L, we have

〈 f (Y).x̂, g(Y).x̂〉 =
D−1

∑
i=−D

f (λi)g(λi)‖yi‖2.

Define a Hermitian inner product 〈·, ·〉L : L×L → C by

〈 f , g〉L =
D−1

∑
i=−D

f (λi)g(λi)‖yi‖2 ( f , g ∈ L). (7.1)

We are now ready to present the orthogonality relation for the non-symmetric dual q-
Krawtchouk polynomials:

Theorem 7.6. Let `+i , `−i be the Laurent polynomials from Definition 6.2. With reference to the
inner product (7.1), we have

〈`σ
i , `τ

j 〉L = δσ,τδi,j |Cσ
i |

for 0 ≤ i, j ≤ D− 1 and σ, τ ∈ {+,−}.
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